
NAVAL POSTflDAOUIATE SHO

Monterey , California

R A DTIC
JIARO 5 1992

THESIS

PASSIVE SONAR TARGET RECOGNITION
USING A BACK-PROPAGATING NEURAL NETWORK

by

DAVID FRANKLIN M4OORE

JUNE 1991

Thesis Advisor: Murali Tummala

Approved for public release; distribution is unlimited

92-05013



UNCLASSIFIED
SECURITY CLASSIFICATION O THIS PAGE

ForX Approved
REPORT DOCUMENTATION PAGE a1No 0704-0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unl imi ted

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School EC/Tu Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a. NAME OF FUNDING SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO.

1 1. TITLE (Include Security Classification)

PASSIVE SONAR TARGET RECOGNITION USING A BACK-PROPAGATING NEURAL NETWORK

12 PERSONAL AUTHOR(S)
MOORE, David Franklin
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Master's Thesis I FROM______ TO _ 1991 June I 78
16 SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the
author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government-
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Neural Networks, Back-propagation, Passive
sonar target recognition, Sonar target modeling

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
The prompt and accurate processing of sonar data is essential in undersea
warfare. The ability to quickly detect and classify sonar targets is
crucial to the performance and survivability of all navy surface ships and
submarines. With the advent of neural network technology, new opportuni-
ties have arisen which could greatly enhance current sonar target recogni-
tion capabilities. The main objective of this research is to demonstrate
the practical usage of neural networks in recognizing the acoustic
signatures of passive sonar targets using simulated-at-sea conditions. We
will review the theory behind neural networks, the problems associated
with recognizing acoustic signals in an underwater environment, and we wil
make a detailed case study of a neural network's performance using test
data generated from simulated sonar targets.

20 DISTRIBUTION IAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURJTY CLASSIFICATION

[21 UNCLASSIFIED;UNLIMITED [ SAME AS RpT [] DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22( OFFICE SYMBOL

Murali Tummala (408)646-2645 EC/Tu
DD Form 1473, JUN 86 Previous editions are obsolete SECuRITY CLASS,FCATION OF TiS PACE

S/N 0102-LF-014-6b03 UNCTASSIFIED

i



Approved for public release; distribution is unlimited

Passive Sonar Target Recognition

Using A Back-propagating Neural Network

by

David Franklin Moore
Lieutenant, United States Navy

B.S., University of California, 1982
B.S., California State University, 1986

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June 1991

Author: 1. 4( L , a -C(
DayFranklin Moore

Approved By:
Murali Tummala, Thesis Advisor

Cg ,O"Secon' Reader

Michael A. Morgan, Vairman
Department of Elect rical and

Computer Engineering

ii



ABSTRACT

The prompt and accurate processing of sonar data is

essential in undersea warfare. The ability to quickly detect

and classify sonar targets is crucial to the performance and

survivability of all navy surface ships and submarines. With

the advent of neural network technology, new opportunities

have arisen which could greatly enhance current sonar target

recognition capabilities. The main objective of this research

is to demonstrate the practical usage of neural networks in

recognizing the acoustic signatures of passive sonar targets

using simulated-at-sea conditions. We will review the theory

behind neural networks, the problems associated with

recognizing acoustic signals in an underwater environment, and

we will make a detailed case study of a neural network's

performance using test data generated from simulated sonar

targets.
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I. INTRODUCTION

Improving passive sonar target recognition continues to be

an important problem for the U.S. Navy. Because of the

swiftness and complexity of modern warfare, the prompt and

accurate detection and classification of sonar targets is

vital to the success and survivability of all modern navy

ships. Any failure or delay in identifying and pursuing an

opponent in wartime invites a surprise attack upon ones own

ship. In the past, various methods were used to detect and

classify sonar targets. The earliest method involved a single

sonarman listening to an acoustic signal over a simple hull

mounted hydrophone which he could manually steer to search

for nearby targets. In this method, the expertise of the sonar

operator determined the quality and accuracy of the target

detection and classification. Unfortunately, human beings

cannot discern many important characteristics of underwater

signals because many key signals exist well below the normal

1 to 5 Khz sensitivity range of human ears [Ref. 1]. Since

the analysis of low frequency signals is essential to passive

sonar target recognition, the human operator is inherently

ill-equipped to handle the task. Moreover, the faintest

signals can be masked by the ship's own noise which can

further hamper signal detection. Although human senses are

limited, one thing the human operator does excel at is at
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picking out patterns and discriminating between ambient sea

noises and man-made noises. This important trait is also

shared by neural networks.

Beginning in the early 1950's, as signal processing

techniques and digital computers improved, better methods of

sonar target detection were devised using towed arrays, newly

advanced hull arrays, digital beamforming, and computer

enhanced methods for spectral analysis [Ref. 2]. Most

contemporary sonar systems are improved versions of these

earlier systems. With the advent of neural network technology,

it now becomes possible to combine human-like capabilities of

pattern recognition with the power and speed of modern signal

processing. Neural networks can lend three important qualities

to the realm of acoustic signal processing. First, neural

networks are excellent at forming generalizations about a

given set of objects [Ref. 3]. In our research, such a set of

objects will be comprised of the acoustic signatures of

passive sonar targets. With such a set of acoustic signals,

generalization means that a neural network can learn and

recall the key traits of the signal even in the presence of

ambient-noise and other signal distortions. Thus, a sonar

target signal contaminated by undersea noise may still be

recognizable as long as a few identifying features remain. A

second advantage of neural networks is in their ability to

discriminate between objects or signals which have very

complex interrelationships [Ref. 3]. In sonar target
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recognition, this means that any key features or relationships

attributed to the acoustic signatures that may be non-linear

and not easily solved by other conventional statistical

techniques may be better solved by the application of a neural

network which can solve such problems more quickly and

efficiently. Lastly, and probably the most important advantage

of neural networks lies in their ability to learn and extract

key information from a given set of training examples [Ref.3].

Learning gives the neural network the ability to adapt to

changes in its environment and build upon the information and

associations already stored in its memory. Therefore, because

the undersea environment is so dynamic and complex, an

intelligent and adaptive sonar system regulated by a neural

network would be very suitable for detecting and recognizing

sonar targets.

The idea of using neural networks to solve sonar target

recognition problems is not entirely new. In 1988, two neural

network researchers, R. Paul Gorman and Terrence Sejnowski,

successfully used a neural network to identify the echoes of

undersea objects using active sonar [Ref. 4]. Thus inspired by

the work of Gorman and Sejnowski, the goal of our research was

to design an artificial neural network which could identify

the acoustic signature of a given passive sonar target. Our

goal was accomplished in three steps. First, we created a

computer program that could realistically simulate a passive

sonar target signal. Secondly, we trained a neural network to

3



memorize a simulated sonar target using a back-propagation

learning algorithm. And finally, in our third step, we tested

the neural network's memory to see if it could recognize the

sonar target using two test scenarios generated by the sonar

target model.

By following the above outlined steps, the thesis was

organized in the following manner. Chapter two discusses the

origins and special characteristics of neural networks and the

benefits derived from their application. Also discussed is the

nature of the back-propagation learning algorithm and how it

may be used to train our neural network. Chapter three

discusses the development of the sonar target model and some

of its properties and assumptions. Chapter four describes the

results of training and testing a neural network as applied to

passive sonar target recognition. We also examined the

advantages and disadvantages of two particular neural network

architectures. Lastly, Chapter five discusses the conclusions

of our results and considers the future applications of neural

networks in passive sonar target recognition.
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I. NEURAL NETWORK FUNDAMENTALS

A. TKE NEURAL NETWORK MODEL

1. The Goals of the Neural Network Model

The primary goal of ou investigation into passive

sonar target recognition is to design a neural network that

has the ability to:

1. Learn the acoustic signature of a passive sonar target.

2. Draw generalizations about certain passive sonar signals
thus allowing the system to see through noise and other
disturbances. In applying this property to sonar targets,
this means the ability to identify a target even when it
undergoes changes in range, speed, and aspect.

3. Identify sonar targets even when faced with complex
interrelationships such as changing environments,
multiple targets, and non-linearities in the signal. This
includes learning the ability to distinguish among
multiple targets and to interpret signals corrupted by
ambient-noise or high regional shipping density.

Many recent successes in neural network applications

have illustrated some of these special properties. Some

applications have shown that neural networks can learn special

kinship patterns among families. After memorizing the

genealogies of several related families, the neural network

demonstrated the ability to draw accurate conclusions about

many complex family relationships [Ref. 5]. In addition,

neural networks have shown success in recognizing targets that

are illuminated by active sonar echoes [Ref. 4], and some
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have demonstrated the ability to recognize samples of hand-

written characters [Ref. 5: p. 136]. Each exercise reveals

that neural networks can learn and can correctly generalize

about complicated patterns and distinguish among objects even

when inputs to the network are contaminated by noise or

missing data. In our investigation, the neural network will be

presented first with a set of simulated signals representing

the acoustic signature of a given target. After the neural

network is trained on these signals, it will then be tested to

see if it can remember and thus recognize the target's

acoustic signature even under noisy conditions.

2. The Origin of the Neural Network Model

The study of neural networks has been around since the

1950's and has coexisted with the development of the digital

computer. Many early manifestations of neural networks, such

as the Mark I Perceptron developed in 1957 by Frank

Rosenblatt, gained much interest and notoriety. However, much

of the neural network research came to an abrupt halt in 1969

with the publication of the book Perceptrons by Marvin Minsky

and Seymour Papert who proved that perceptrons could not

implement the simple EXCLUSIVE OR logic operation [Ref. 6]. At

the time, most researchers abandoned neural networks and

pursued the development of the very popular and increasingly

powerful digital computer and related techniques. Little work

was done on neural networks until the late 1970's and early

6



1980's when neural networks made a comeback with the help of

John Hopfield and others who proved both theoretically and

experimentally that massively parallel machines like neural

networks could be designed to make intelligent decisions and

perform useful tasks. Moreover, they showed that the neural

network's human-like data processing style was beyond the

capabilities of conventional digital computers. In 1986, David

Rumelhart and James McClelland demonstrated a powerful

learning algorithm known as the back-propagation rule which

inserts a "hidden" layer of neurons into Rosenblatt's

perceptron and thus corrects the deficiencies exposed by

Minsky and Papert. The neural networks are now used in many

practical applications. [Ref. 6]

3. Neurons - The Neural Network's Basic Processing

Elements

Neural networks are parallel, distributed, information

processing systems capable of learning and recalling given

sets of data and recognizing complex associations among sets

of related objects [Ref. 6]. Neural networks, also sometimes

called connection machines, process data analogously to the

way in which human brains process data. In the brain, neurons

behave like tiny microprocessing elements which receive and

combine input signals dispatched by other neurons (Figure

2.1). Each nerve cell receives input signals through input

structures called dendrites. The arriving input signals are
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transformed into charged particles which are accumulated to

form a single voltage. If the cumulative voltage reaches a

cell's activation threshold, the cell fires producing an

action potential which propagates down an output path called

an axon. When this output signal reaches the axon's terminal

end, it is converted into chemical energy in the form of a

neurotransmitter which is injected into the junction or

synapse joining the axon terminal of the activated neuron with

the dendritic inputs of the targeted neuron. As the passing

~SYNAPSE

liCELL BO DY

DENDRITE

Figure 2.1: Diagram of a biological neuron.

neural signal travels between neurons, information is either

being stored as occurs in training or it is being retrieved as

occurs during recall. Consequently, the unique capabilities of

a neural network are derived from these complex
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interrelationships shown by the vast network of interconnected

neurons. This complex neural architecture gives every neural

network its special properties. Thus borrowing from the

biological neuron, the neurons of artificial neural networks

emulate the information processing behavior displayed by the

human brain by interconnecting a large number of artificial

neurons called processing elements (PE's). [Ref. 7]

Each neural processing element has four basic

components (Figure 2.2).

1. Input Connections (dendrites) through which the neuron
receives activation signals from other neurons [Ref. 8].

2. Summation Function which combines the input signals from
many sources into a single activation signal [Ref. 8].

3. Threshold Function that converts the summation of input
signals into an output activation signal [Ref. 8].

4. Output Connections (axons) represent the path followed by
the output activation signal produced by the threshold
function [Ref. 8].

Each connection that joins two processing elements is

assigned a numerical weight which quantifies the strength of

that neural connection. Each weight modulates the strength of

the incoming input signals and thus helps to determine the

contribution of that connection as it reaches the targeted

processing element. When all the weighted input signals

arrive at the targeted processing element, they are added

together by a summing function. The resulting sum of weighted

inputs is then passed to an awaiting threshold function. If

9



the combined level of activation exceeds the given threshold

as defined by the threshold function, then the targeted

processing element is activated and an output signal is sent

to other neurons. Thus, unlike conventional computers which

store data at discrete addresses, the information stored in

a neural network resides in the weighted connections joining

the processing elements. [Ref. 8]

INPUT CONNECTION THRESHOLD FUNCTION

CONNECTION

Figure 2.2: Diagram of an artificial neuron or processing
element.

B. THE GENERALIZED DELTA RULE

Before a neural network is ready to be used, its

connection weights must be predetermined through the process

of training. In neural networks, there are two important types

of learning. One is competitive learning in which the network

10



is presented with a series of input examples and the

processing elements compete among themselves to establish a

final equilibrium among their connection weights. This method

requires fairly complex network architectures and learning

algorithms in order to be implemented. The generalized delta-

rule, however, follows another type of learning called

supervised learning in which the network is trained using a

series of input examples which are associated with a desired

target output. In this scheme, the network's connection

weights align themselves to produce the target output when fed

the proper input signal. To implement the delta-rule, all

connection weights are initialized using small random values.

As training proceeds, the network is presented with training

pairs, one representing an input pattern, and the other

representing the desired target output. The training process

continues until each input pattern generates its desired

output response. During any given training event, the input

nodes of the network are presented with an input pattern I,

which invokes an output response 0. from the network.

Comparing the output response O to the desired target output

T. produces a delta. Following each training event, the

connection weights are updated to reflect the discrepancy

between the neural network's own generated output and the

ideal target output [Ref. 8]. This quantity is expressed in

11



the following equation

Awi, = TI(TJ - Oj) I i  
(2.1)

The constant n represents a momentum term that can accelerate

the convergence of the network to its final connection weight

values. With the delta-rule, the most active inputs in an

input pattern cause the greatest weight modification. The

delta-rule uses a gradient heuristic, meaning that connection

weights tend to change in directions that maximize the change

in an error term that sums the squares of output deltas [Ref.

8]. Thus the delta-rule produces a steepest descent algorithm

that converges quickly in the beginning when the differences

between the network generated output and target output are

greatest but then converges more slowly as the generated

output nears the targeted output. Although the delta-rule

provides an effective training method, it has some

limitations. First, the generalized delta-rule is most

effective in networks using a "hidden" layer of processing

elements. A hidden layer is a separate layer of processing

elements positioned between the input and output layers.

Hidden layers are used because single unit networks are unable

to perform important operations like computing the EXCLUSIVE

OR which was the main drawback of the perceptrons. One final.

drawback of the delta-rule is that it can sometimes be

unstable. When using the delta-rule, the input parameters and

learning momentum term must be well behaved, otherwise, the

12



algorithm can become unstable and convergence may never occur

(Ref. 8]. To counter this limitation, input data and training

data sometimes need to be modified or normalized in order to

prevent instability from occurring. Finding the best momentum

term is often a matter of trial and error.

C. SUIDI Y OF THE BACK-PROPAGATION ALGORITHM

One of the direct benefits of the generalized delta-rule

is the back-propagation algorithm which is basically a

systematic implementation of the delta-rule. The back-

propagation algorithm can be broken into five separate steps.

Each pass through the five steps constitutes one iteration in

the training cycle.

Step 1. Calculate the sum of products (Na) of the connection
weight matrix (W ) with its respective input vector (Ii).
Where n equals the number of elements in the input vector
during the tth training cycle. [Ref. 9]

n (2.2)

N, = wj (t) Ii
i=I

Step 2. Calculate the output signal (0.) by passing the sum
of products (N.) through the threshold function f.(N.). The
threshold function must abide by two rules. First, the
output of the function must be nondecreasing and second the
function must be differentiable. Two commonly used threshold
functions are the sigmoid and the hyperbolic tangent
functions. [Ref. 9]

Oj fj (Nj) (2.3)
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Step 3. Calculate the delta term (6.) by comparing the
output signal (0.) with the desired target output (T-) and
multiply that difference with the derivative of the
threshold function. [Ref. 9]

T -Oj )f N.(2.4)

Step 4. This is the step where the back-propagation occurs.
The new delta term which is based on the current output is
sent back around to update the connection weight matrix
WB (t+l). The j? variable represents the momentum term which
can be increased or decreased in order to facilitate the
training process. [Ref. 9]

Wji (t+) = wji (t) + n (2.5)

Step 5. Return to step 1 and repeat the process until the
connection weights can generate the desired output response
when given the appropriate input vector [Ref. 9].

14



III. THE SONAR TARGET MODEL

A. THE PASSIVE SOMAR EQUATION

Before we can properly design and train a neural network

to recognize the acoustic signature of a given sonar target,

a realistic sonar signal must be created that can simulate a

sonar target as a function of range, speed and aspect, and can

account for ambient undersea noises including man-made

shipping noises. In order to design a proper target model we

must follow the basic principles of the passive sonar equation

[Ref. 2: p. 21) which can be expressed as

SL - TL = NL - DI + DT (3.1)

Each term in the passive sonar equation is expressed in

decibels. The first term, SL, is the source level of a given

target representing the total amount of acoustic energy

emitted from the target of interest. It includes such things

as cavitation noise, screw blade noise, and a variety of

narrow-band tonals representing a family of mechanically

generated signals that radiate from auxiliary machinery,

pumps, generators, and certain types of flow noises [Ref.2:

pp.328-351].

The second term, TL, represents the transmission losses of

a signal as it travels from the source location to the

15



receiving hydrophone. Transmission loss consists of several

key components. The first component is spreading loss. As

sound propagates through a medium, the acoustic intensity of

the wave decreases as a function of the square of the distance

between the source and the receiver. The second component of

transmission loss is attenuation which is a function of

frequency as well as range. In general, as frequency

increases, the attenuation of an acoustic signal also

increases. Therefore, one can expect higher frequencies to

propagate shorter distances than lower frequencies. For

purposes of the sonar target model discussed here, attention

will be directed toward the lower end of the frequency

spectrum where the effects of attenuation are not as strongly

felt. The entire frequency range covered by our model will be

from 1 Hz to 256 Hz. In addition to spreading and attenuation

losses, other factors such as scattering losses also

contribute to the overall transmission loss. Sound scattering

occurs when sound waves come in contact with underwater

barriers such as the undersea bottom, stratified thermal

layers, or the air-sea interface at the surface. Sometimes

even an obstructing school of fish can cause sound scattering.

To eliminate the effects of scattering in the sonar target

model, it can be assumed that all passive sonar signals are

direct path which means that the acoustic signals travel

directly from the sound source to the receiver without

encountering any scattering obstacles [Ref.2: pp.99-285].
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The third term in the passive sonar equation, NL, refers

to the ambient-noise level present at all times under the

ocean. Ambient-noise includes noise caused by the wind, rain,

currents, and wave action. Much of the ambient-noise is

measured in sea state. The higher the sea state level, the

higher the ambient-noise present. In the sonar target model,

the ambient-noise level will be expressed in terms of sea

state. Each t~me the sea state increases by one, the ambient-

noise level doubles. In addition to environmental ambient-

noise, there are ocean noises attributable to shipping or

biological organisms such as fish or shrimp. The sonar target

model will include only the shipping density as a factor in

calculating the total ambient-noise [Ref.2: pp.202-223].

The last two factors expressed in the passive sonar

equation, DI and DT, are both dependent on the transducer

receiving the acoustic signal. DI represents the directivity

index of the transducer. The directivity index depends on the

physical arrangement of the transducer array which when

oriented in specific direction can exhibit a large gain or

sensitivity for a given signal. This type of directivity is

often used in assessing the bearing to a sonar target [Ref.2:

p.22]. For purposes of this model, we can assume that our

transducer is omni-directional and thus exhibits a gain of

one in all directions. Thus, DI will be computed as 0 dB in

the passive sonar equation. The last factor, DT, is the

detection threshold of the receiving transducer and is

17



dependent on the overall sensitivity of a given transducer. In

the sonar target model a detection threshold of 0 dB SNR will

be selected. This means that all signals received from the

target source that are above 0 dB SNR will be considered as a

target present and all other signals below 0 dB SNR will be

considered as noise, in which case, only ambient-noise will be

detected. After revising the passive sonar equation for the

sonar target model, we obtain

SL - TL - NL > DT (3.2)

which reflects the fact that for all signals received from the

sonar target above 0 dB, our model will detect the target.

B. MODELING THE TARGET SOURCE

1. CAVITATION NOISE

The target source for our model will exhibit three

types of signals: cavitation noise, blade rate noise, and

narrow band tonals. Cavitation noise covers a broad spectrum

with its center frequency located around 100 Hz (Figure 3.1)

(Ref. 2: p. 334-339]. Cavitation noise is generated by a

ship's propeller. As the propeller blade churns the water, a

trail of bubbles is generated. As these bubbles form and then

collapse, the resulting noise created is called cavitation.

Cavitation noise can vary with respect to a target's speed and

18
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Figure 3.1 (a): Plot of the actual cavitation noise signal
as produced by the sonar target. The amplitude is referenced
to 1 APa.
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Figure 3.1 (b) : Plot of the cavitation noise spectrum as
produced by the sonar target model. Notice that the center
frequency of this spectrum is approximately 100 Hz.
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depth. For the purposes of this model, we can assume that the

target's depth remains constant at the surface. Therefore,

cavitation noise will vary only in response to changes in

target speed. From the standpoint of target detection and

classification, this means that as the target ship's speed

increase., the cavitation noise created will tend to mask

fainter tonals making the target signal more difficult to

identify. However, since neural networks are capable of

recognizing important features from noisy and distorted

signals, our neural network should be well equipped to see

through cavitation-type noise. [Ref.2: pp.334-339]

2. SCREW BLADE NOISE

Screw blade noise is the second component of the

target source's acoustic signature. Screw blade or propeller

noise depends on several factors including the target's speed,

the number of blades on each screw, and the turns per knot

(TPK) of the screw itself. As a ship's propeller churns the

water, an acoustic signal or "blade rate" is generated [Ref.

2:p. 348). The propeller noise is an amplitude-modulated

signal and contains discrete spectral blade rate components

that can be detectable in the low frequency end of the

acoustic noise spectrum (Figure 3.2). The frequencies of the

b'ade rate can be determined by the formula

fn = nSTNBLADEs (3.3)

20
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Figure 3.2 (a): Plot of the actual cavitation noise signal
with screw blade noise added. This signal was produced by
the sonar target model. The signal's amplitude is referenced
to 1 gPa.
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Figure 3.2 (b): Plot of the cavitation noise spectrum with
screw blade noise added. This signal is from the sonar
target model. Notice the "blade rate" lines below 25 Hz.
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where n is the nth harmonic of the fundamental blade rate

frequency f0, S is the ship's speed in knots, T represents the

number of propeller turns per knot (TPK), and NsLADs is the

number of blades per propeller. The blade rate spectra are

best observed at low frequencies below 50 hz. Higher frequency

harmonics tend to be weaker and they attenuate faster.

Moreover, weaker signals tend to be masked by louder signals

such as cavitation and ambient-noise. Once again, the neural

network's ability to generalize and identify objects even when

such information is missing makes them useful in identifying

a target with or without the presence of screw blade noise.

[Ref.2: p.348]

3. OTHER RADIATED NOISE

The third component of the target source signal

involves the remaining forms of radiated noise emitted by the

target in the form of narrow band tonals. Tonals are normally

seen as very narrow spectral lines occurring in the ship's

acoustic signature spectrum. Tonals are created from a variety

of sources including auxiliary machinery, flow noise,

reduction gears, propellers, and other mechanical sources. The

presence of tonals can act as a ship's fingerprint. Figure

3.3 shows a target's signal spectrum where tonals appear at

53, 56 and 203 Hz. If a ship has a bad bearing in its bilge

pump, for example, the tonal radiating from that bad bearing

can help single out that ship from others (See Table 3.1).
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Another factor affecting the detection of tonals is determined

by the target ship's aspect. Each tonal can have a certain

directivity (Figure 3.4). The strongest tonals travel along

the most direct path from the mechanical noise source to the

ship-sea interface where it is emitted into the surrounding

undersea environment. Longer propagation paths can often

absorb and muffle mechanical vibrations before they can be

radiated as a tonal. By training our neural network to

recognize tonals and associate those tonals with a given

target, we can effectively teach the neural network a sonar

target's acoustic signature [Ref.2: p.341].

TABLE 3.1: A LIST OF TONALS USED TO SIMULATE A SONAR TARGET

Sonar Target Signal Signal Source Frequency (Hz)

Tonal A Motor Bearing 88 Hz @ 160 dB

Tonal B Reduction Gear 53-57 Hz

@ 165 dB

Tonal C Flow Noise 203 Hz @ 169 dB

Tonal D Generator 60, 120, 180,

240 Hz @ 164 dB

Tonal E Fuel Oil Pump 135 Hz @ 158 dB
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Figure 3.3 (a): This is a plot of the simulated acoustic
signal produced by a single sonar target. Cavitation noise,
blade rate noise, and narrow-band tonals are included.

£

.
m4

Figure 3.3 (b): This plot is the frequency spectrum of
Figure 3.3 (a). This spectrum was created by a target
traveling at 8 knots, at a range of 5000 yds, and with a 0

degree aspect (Refer to Figure 3.4). Ambient-noise was not
included.
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Figure 3.4: This diagram shows the directivities of the
tonals in Table 3.1 as a function of aspect. Note that at a
10 degree aspect, the most prominent tonals are the 203 Hz
and 53-57 Hz tonals accompanied by the blade rate spectra.
Compare these tonals to the spectrum of Figure 3.3 (b).
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C. TRANSMISSION LOSSES

In the sonar target model, transmission losses will be a

function of range and frequency. The spreading losses

previously described will be a function of range while

attenuation will be a function of range as well as frequency.

An expression for the attenuation coefficient was developed

from empirical data measured by W.H Thorpe in 1967 [Ref. 2: p.

108]. This particular attenuation coefficient assumes a sea

water temperature of 390 F and a depth of 3000 feet. The

expression is stated as

a = 0.IF2 + 40F 2  + 2.75x10-4F2 + 0.003 (3.4)

1 + F2  4.100 + F2

where a is the attenuation coefficient expressed in dB per

kiloyard [Ref.2: p.108]. Using this attenuation coefficient,

the transmission loss equation is given by

TL = 20logr + arxl0-3  (3.5)

where TL is expressed in dB and r is the range to the target

in yards [Ref.2: p.111].

D. AMBIENT-NOISE LEVEL

The last important component of the sonar target model is

the ambient-noise level which represents all of the background

noise in the underwater environment. The several factors

contribute to ambient-noise. First, wind, rain and wave action

make up a large part of the ambient-noise, and secondly,

26



shipping density and biological noises contribute to the

remaining part of ambient-noise (Figure 3.5). The ambient-

noise component of the sonar target model will provide the

neural network with a broad range of complex relationships,

and will aid in the neural network's generalization process

[Ref. 10]. Our goal is to train the neural network with as

many examples as possible from the sonar target model. After

the neural network is trained, it will be tested using

realistic scenarios generated by the sonar target model.
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Figure 3.5 (a): This is a plot of the ambient-noise signal
generated in a sea state one.
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Figure 3.5 (b): This plot is the frequency spectrum of
Figure 3.5 (a). Note that there are two clear peaks. The
first peak lies below 10 Hz and represents low frequency
noise caused by waves and currents. The second peak,
centered at 80 Hz, represents noise caused mostly by wind.
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IV. NEURAL NETWORK TRAINING AND TESTING

A. NEURAL NETWORK DESIGN CONSIDERATIONS

Once the sonar target model was completed and it conveyed

an accurate simulation of a passive sonar target, the neural

network was ready to be trained and tested. As a basis for our

neural network design, we decided to train the neural network

to recognize four different signals. The first signal would be

ambient-noise. By providing the neural network with samples

of the ambient-noise spectrum, we could aid the neural network

in establishing a reference level whereby it could judge

either the presence or the absence of sonar targets. When the

neural network recognizes only ambient-noise, no detectable

targets are present. The remaining three signal spectrums

which we call target one, target two, and target three

represent the three sonar targets the neural network was

trained to recognize. When one or all of these targets

approach a detectable range, the neural network should

indicate their presence, otherwise, the neural network would

only indicate the presence of ambient-noise.

Once we had decided upon a testable criteria for our

neural network, we needed an efficient design. Unlike other

design methods in which the design path is clearly marked, the

path to designing a neural network is less apparent. There is
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no single or correct approach for conjuring the perfect neural

network arrangement. Often much experimentation and trial and

error is required to arrive at an optimal arrangement of

input, hidden and output layers, and the best combination of

training vectors and learning parameters. In designing a

neural network, there are three basic aspects of the design

that must be considered:

1. Choosing an appropriate learning rule.

2. Arranging an effective neural network architecture.

3. Selecting some suitable training examples for educating
the neural network.

For the first step, one must choose the best learning

rule. For this design, the back-propagation algorithm was

chosen because of its reputation for producing very effective

neural networks. Choosing the learning rule often dictates

the choices for the other design considerations. By choosing

the back-propagation algorithm, we must use an accommodating

neural network architecture that leads to the best results. As

we saw in Chapter two Section B, the best arrangement for a

neural network using back-propagation is a multi-layered

network with input, hidden and output layers. Therefore, in

the second design step, we decided upon a hidden layer style

architecture which left us to choose the best layer

arrangement. Previous experience with layered architectures

has shown [Ref. 10] that as the ratio of input elements to

30



hidden elements increases, the better the neural network

becomes at generalization. Therefore, we had to choose more

input elements in relation to hidden elements. In order to

find the best number of processing elements for the hidden

layer, we looked at two rules-of-thumb which were commonly

used by neural network designers. The first rule-of-thumb

states that "the more complex the relationship between the

input data and the desired output, the more PEs (processing

elements) are normally required in the hidden layer" [Ref.l1].

The second rule-of-thumb concerning the number of hidden layer

units, h, can be best expressed in the formula [Ref. 11]

h KCf*( m + n) (4.1)

where the numerator, K, represents the number of training

vectors available to train the network, and the variables m

and n represent the number of processing elements occupying

the input and output layers, respectively. Note that Cf

represents the data complexity factor. Based on previous

experience, it has been observed that as the complexity or

noise level of the training data increases, the higher the

data complexity coefficient needs to be in order to create an

effective neural network [Ref. 11]. Generally, for relatively

clean data, the Cf coefficient should be less than ten, and

for noisy data one would expect a coefficient Cf greater than

ten [Ref.l1]. One other factor to consider in choosing the
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number of hidden elements is the computation time required for

training. The more processing elements there are to train, the

longer it takes for the neural network to converge to its

final training state. Based on these considerations and a few

preliminary test results, the decision was made to divide the

256 Hz frequency spectrum (Figure 4.1) into 64 4Hz bins thus

forming the input vector for the neural network. Using 64

instead of 256 input bins helped to reduce computation time

while maintaining most features in the frequency spectrum

(Figure 4.2). Since the neural network accommodates the

recognition of three sonar targets plus ambient-noise, the

decision was made to use 32 processing elements in the hidden

layer. This number would tend to balance the complexity

involved in training for three targets plus ambient-noise with

the need to generalize the network. Finally, four processing

elements were chosen for the output layer (Figure 4.3). The

final output elements represented the ambient sea state noise,

target one, target two, and target three, respectively.

The last design consideration concerns the type of

training data needed for the best training results. From

experiments conducted in the literature, it was apparent that

noisy training samples were better suited for training neural

networks than clean samples because they force the neural

network to generalize [Ref. 10]. Without generalization, the

neural network would only be able to recognize inputs that

strongly resembled the training data, thus making the network
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Figure 4.1: This plot is the frequency spectrum of a
simulated sonar target signal as seen at the receiver. This
plot is the signal in Figure 3.3 after it was contaminated
by ambient-noise.
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Figure 4.2: This plot is the frequency spectrum of Figure
4.1 after it was condensed into 64 frequency bins. These
bins were used as inputs to the neural network. Note that
the 64 bins retain the spectrum's key characteristics.
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useless for identifying targets presented in diverse

environments. Thus, the decision was made to include noise in

the training data to enhance the neural network's overall

performance.

OUTPUT LAYER

HIDDEN (

LA YER 0 9

INPUT LAYER (64 Elements)

Figure 4.3: This is a diagram of the first neural network
architecture with 64 processing elements in the input layer,
32 in the hidden layer, and four processing elements in the
output layer.

Lastly, we used 50 samples of each target. The samples

represented each target at random ranges, speeds, and aspects.

The neural network was trained to produce an output value of

one if a desired signal was present or a zero if it was

absent. In preparing the training data, we discovered one note

of caution. As training data is gathered, one must limit the
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number of training examples used to avoid overtraining,

otherwise, the neural network Aight recognize anything,

including false targets. Thus, one must be selective in

choosing the quality and quantity of training data because

overtraining degrades the neural network's performance.

B. TESTING THE FIRST NEURAL NETWORK ARCHITECTURE

After considering the design parameters, we trained the

neural network using the back-propagation algorithm provided

by NeuralWare software [Ref. 11]. The network was instructed

to converge to a mean-square error threshold of 0.005

requiring 550,000 training iterations. A sigmoid function was

used as the threshold function. To test the network's memory,

two scenarios were created. In the first scenario, the neural

network was presented with a single target, target one (Figure

4.4). In the second scenario, target one was accompanied by

the two other targets, target two and target three (Figure

4.5). In both scenarios, the targets were initially placed at

a distance of 16,000 yards from a receiving transducer acting

as the reference point. All targets maintained a constant

course and speed throughout the test. In the multi-target

scenario, target two led target one by 2000 yards, and target

one led target three by 2000 yards. With this arrangement, one

should expect the receiver to detect target two first,

followed by target one and then target three. As the targets

approach the receiver, we should expect times when two or more
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Figure 4.4: This is a diagram of scenario one. Initially,
target one is stationed 16000 yards from the receiver
traveling on a course of 130 degrees at 8 knots. The CPA is
3000 yards.

36



N

Figure 4.5: This is a diagram of scenario two. All targets
are initialized at the same course and speed as in scenario
one. The CPAs for targets one, two and three are 3000, 7000,
and 4000 yards, respectively.

37



targets are detected and identified simultaneously. In the

absence of any targets, we should expect the neural network to

respond solely to ambient-noise. The goal of these test

scenarios was to evaluate the neural network's ability to

detect and identify a passive sonar target or a group of

targets even when those targets are changing in range and

aspect. In order to simplify the test, we limited the overall

ambient-noise to a sea state of one and a low shipping density

environment.

After the tests were conducted, the single target scenario

was evaluated first and several key observations were made. In

viewing the data, we decided to accept all output values above

0.90 as a signal detection, and all those below 0.10 as a

signal not present (Appendix A: Figure A. 1 (a) (b) (c) (d)). All

output values between 0.10 and 0.90 were considered as

indeterminate. Initially, the neural network behaved as

expected. For the first four observation times, only ambient-

noise was detectable because target one was at a great

distance away. Between observation times five and seven, the

network began approaching an indeterminate state as if it were

trying to decide whether target one or ambient-noise was the

strongest signal present. As target one drew closer, it

appears the neural network was building a stronger impression.

By observation time eight, target one was clearly identified.

However, at observation time nine, the neural network made a

surprising switch. Suddenly, target two emerged and target one
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disappeared. At observation time ten, target one returned and

target two disappeared. Gradually, as target one passes its

closest point of approach (CPA) and continues on, the neural

network lost contact. By observation time 14, target one was

no longer detected and ambient-noise became the dominant

signal. The performance of the neural network in this test

raised two important questions. First, why did the network

flip-flop from target one to target two and then back to

target one? Secondly, when target two appeared why did target

one totally disappear? In answer to the first question, it

seems likely that at certain aspect angles, two different

targets may appear alike. This would be analogous to a human

being trying to recognize someone at a particular angle or

distance away, only to find as he gets closer and sees more

identifying traits, the person he thought he recognized was

someone else. Similarly, the neural network can exhibit the

same behavior. An answer to this problem is to give the

network more training on its deficiencies or move the neural

network to another location so it can get a better look. It is

possible that a wide array of interlinked transducers could

give the neural network a better consensus. In answer to the

second question, the fact that target one disappeared when

target two emerged showed that certain processing elements are

trained to dominate other processing elements depending on the

strength of a given input signal. Thus, it appears that at

least one target, target two in particular, had been trained
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to dominate over the other targets. Both of these problems

need to be solved before the neural network can function

correctly. As we evaluated the second scenario, we found that

it had similar drawbacks as witnessed in the first scenario.

This time, however, all three targets were present in the

input signal simultaneously (Appendix A: Figure A.2

(a)(b)(c) (d)). As the scenario began, the neural network

seemed to be focusing on the targets. The detection level of

the ambient-noise was very low. In observation times two and

three the neural network detected and clearly identified

target three. By observation time four, the neural network

began a transition between target two and target three. By

observation time five, target two was the dominant target

sensed by the network. The network maintained contact with

target two until observation time ten when there was another

transition period between targets two and three. This time

target three became dominant at about the time it reached CPA.

From observation times 13 to 19 the targets were traveling out

of range and the neural network clearly identified the

presence of ambient-noise. As in the first scenario the

neural network displayed the tendency to choose one dominant

target over the others. In other words, the weaker targets

were inhibited by the stronger target. Only one target was

allowed to be detected and identified at a time. To make

matters worse, certain targets, like target one, were

completely dominated and never detected at all. These

40



inherent weaknesses had to be corrected so that all the

targets could be detected and identified concurrently.

C. RZEVSZNG THE NEURAL NETWORK ARCHZTECTURE

After evaluating the deficiencies of the first neural

network, the decision was made to revise it using some key

alterations. The modified network still retained 64 input

elements, 32 hidden elements and four output elements.

However, the connection scheme for those elements were

changed. Instead of connecting all elements in the hidden

layer to each element in the output layer, the hidden layer

was divided into four separate regions, each servicing one

output element (Figure 4.8). Each eight element region in the

resulting neural network was specifically trained as an expert

on either target one, target two, target three, or ambient-

noise. In this scheme, each output element could be physically

isolated from the others thus preventing any inhibitory cross-

talk. Training the neural network was conducted as before

using the same set of training vectors.

After the second neural network architecture was retrained

and implemented, it was tested using the same previous

scenarios. In scenario one, once again, only target one was

present while traveling at a constant course and speed. This

time, however, target one was detected earlier at observation

time seven (Appendix A: Figure A.3 (a)(b)(c)(d)). Moreover,

the contact was not broken once it was made. In other words,
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Figure 4.8: This is a diagram of the modified neural network
architecture. Notice that the output elements have been
isolated to their respective expert regions.

target two did not suddenly intervene. Even though target two

did appear briefly during observation time nine, the network

no longer sensed it as strongly as it did before and most

importantly, its presence no longer interfered with the

network's perception of target one. The modified architecture

made each output element more sensitive to its respective

target and removed the damaging cross-talk that previously

interfered with the target's detection and classification.

In the second scenario, all three targets were presented

to the neural network as before. This time, however, it was

apparent that no one target dominated the neural network
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(APPENDIX A: Figure A.4 (a)(b)(c)(d)). Acoustically, target

two seemed to interfere with target one and target three by

masking their respective signals. However, as a result of the

modified neural architecture, all three targets were expressed

more clearly and concurrently. Target one was no longer

suppressed by target two.

The modified neural network architecture appears to be the

best approach toward solving the problem of passive sonar

target recognition for several reasons. First, by dividing

the hidden layer into separate expert regions, we removed the

cross-talk that inhibited the output elements from revealing

a target detection, even though the target was present and

should have been detectable. Furthermore, by intentionally

training each expert region to regard the inputs of other

targets as non-detections, we created a training scheme

whereby false targets are actively ignored and the sensitivity

towards the desired target is reinforced and improved. This

added sensitivity removed the neural network's propensity for

spurious guessing which generally resulted in erroneous

detections. A second advantage of the improved neural

architecture was that by decreasing the number of hidden

units, we could speed up computation time and better enhance

the generalization property of the neural network. Lastly, by

using the modified neural architecture, we can easily add new

targets to the neural network without changing or effecting

any of the existing processing elements. For instance, a new
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region of hidden elements devoted to a new target could be

separately trained and then added to the existing network at

some future time. This can be accomplished by simply grafting

one more region of hidden elements plus an additional output

element onto the existing neural network. One can imagine such

a neural network architecture to be very justifiable for sonar

system applications.
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V. CONCLUSIONS

The main objective of our research was to design a neural

network which could identify the acoustic signature of a given

passive sonar target. To achieve this objective, we followed

these basic steps. First, we created a computer program using

MATLAB [Ref. 12] (APPENDIX B) that could simulate a realistic

passive sonar target. Next, using the target simulations from

our passive sonar target model, we trained the neural network

to recognize the target's simulated acoustic signature by

using the back-propagation algorithm. When training was

completed, we tested the neural network scheme by providing

two separate scenarios which helped us judge the effectiveness

of the neural network's performance.

What we discovered was that a neural network could be

implemented to recognize an acoustic signature by observing

the following restrictions. First, training a neural network

can be a very lengthy process, however, by optimizing the

number of processing elements, adjusting the learning

parameters and using an appropriate threshold function, we

could speed up the overall training process. In addition, we

found that by choosing the best neural network architecture

and by using the best combination of training examples, we

could greatly improve overall performance of the neural

network. In our investigation, the best performing neural
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architecture used 64 input elements connected to a hidden

layer which was sub-divided into four separate regions. Each

region was a trained expert servicing one output element.

This connection scheme prevented one target from dominating

the others and allowed more than one target to be recognized

or identified simultaneously. Lastly, we noted that neural

network's are not 100% foolproof. As observed in scenario

one, it is possible for one target to resemble another target

under certain conditions just as a person might mistakenly

recognize someone at a distance. This limitation can be

improved by retraining a deficient neural network with better

training examples or by providing the neural network with

better observations from which to judge. In addition, the

preprocessing of input data using appropriate signal

processing techniques to improve the SNR of one target over

another can help to enhance the neural network's performance.

Neural networks can be useful in situations where the

qualities of human-like pattern recognition capabilities are

required but where humans beings cannot be deployed, such as

in deep sea SOSUS stations, incorporated into the guidance

systems of weapons such as torpedoes or mines, or when

employed in small sensors such as sonobuoys. Neural network

technology presents a viable option for improving contemporary

sonar systems. In future investigations, it would be

challenging to design neural network schemes that were

connected to a large array of sonar transducers. By increasing
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the number of transducers, we could provide the neural network

with multiple observations taken from different angles. This

scheme could greatly enhance the neural network's ability to

identify and draw clearer conclusions about the objects it

senses. Other areas and applications that can be investigated

are numerous. Some of them include the development of better

neural network architectures, the use of real sonar targets

vice simulated sonar targets as training data, and the

implementation of other more highly adaptive learning

algorithms such as those using competitive learning rules.
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APPENDIX A: TEST DATA
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Figure A.I (a): The activity level of the ambient-noise
processing element, located in the output layer, during
scenario one. This was part of the evaluation of the first
neural network architecture (See Table A.1).
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Figure A.1 (b): The activity level of target one's
processing element, located in the output layer, during
scenario one. This was part of the evaluation of the first
neural network architecture (See Table A.1).
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Figure A.1 (c): The activity level for target two's
processing element, located in the output layer, during
scenario one. This was part of the evaluation of the first
neural network architecture (See Table A.1).
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Figure A.1 (d): The activity level of target three's
processing element, located in the output layer, during
scenario one. This was part of the evaluation of the first
neural network architecture (See Table A.1).

51



1.2

0,61 L

0.2

0-

-40 2 4 6 a 10 12 14 16 is MD

OaSEVATON

Figure A.2 (a): The activity level of the ambient-noise
processing element, located in the output layer, during
scenario two. This was part of the evaluation for the first
neural network architecture (See Table A.2).
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Figure A.2 (b): The activity level of target one's
processing element, located in the output layer, during
scenario two. This was part of the evaluation of the first
neural network architecture (See Table A.2).
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Figure A.2 (c): The activity level of target two's
processing element, located in the output layer, during
scenario two. This was part of the evaluation of the first
neural network architecture (See Table A.2).
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Figure A.2 (d): The activity level of target three's
processing element, located in the output layer, during
scenario two. This was part of the evaluation of the first
neural network architecture (See Table A.2).
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(a):The ! IC AVA1 4 1 ;~ o hFigure A.3 (a) The activity level of the ambient-noise
processing element, located in the output layer, during
scenario one. This was part of the evaluation of the
modified neural network (See Table A.3).
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Figure A.3 (b): The activity level of target one's
processing element, located in the output layer, during
scenario one. This was part of the evaluation of the
modified neural network (See Table A.3).
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Figure A.3 (c): The activity level of target two's
processing element, located in the output layer, during
scenario one. This was part of the evaluation of the
modified neural network (See Table A.3).
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Figure A.3 (d): The activity level of target three's
processing element, located in the output layer, during
scenario one. This was part of the evaluation of the
modified neural network (See Table A.3).
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Figure A.4 (a): The activity level of the ambient-noise
processing element, located in the output layer, during
scenario two. This is part of the evaluation of the modified
neural network (See Table A.4).
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Figure A.4 (b): The activity level of target two's
processing element, located in the output layer, during
scenario two. This was part of the evaluation of the
modified neural network (See Table A.4).
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Figure A.4 (): The activity level of target two's
processing element, located in the output layer, during
scenario two. This was part of the evaluation of the
modified neural network (See Table A.4).
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Figure A4 (d) : The activity level of target three's
processing element, located in the output layer, during
scenario two. This was part of the evaluation of the
modified neural network (See Table A.4).
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TABLE A.1: A LIST OF DATA USED IN FIGURE A.1

OBSERVATION AMBIENT TARGET 1 TARGET 2 TARGET 3

TIME 1 0.70 0.10 0.15 0.03

TIME 2 0.72 0.08 0.09 0.09

TIME 3 0.88 -0.08 0.04 0.20

TIME 4 1.02 -0.03 -0.10 0.03

TIME 5 -0.05 0.25 0.88 -0.08

TIME 6 -0.04 0.59 0.52 -0.04

TIME 7 0.05 0.79 0.12 0.05

TIME 8 -0.08 1.28 -0.17 -0.17

TIME 9 0.13 0.09 1.09 -0.16

TIME 10 -0.07 1.24 -0.15 -0.14

TIME 11 -0.06 0.83 0.31 -0.09

TIME 12 0.01 1.03 -0.05 0.01

TIME 13 0.00 0.95 0.00 0.04

TIME 14 1.02 0.03 -0.02 -0.01

TIME 15 0.93 -0.11 0.09 0.12

TIME 16 1.04 -0.04 -0.02 0.02

TIME 17 0.94 0.06 0.00 0.01

TIME 18 0.99 0.05 0.00 -0.03

TIME 19 1.00 0.04 -0.02 -0.03
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TABLE A.2: A LIST OF DATA USED IN FIGURE A.2

OBSERVATION AMBIENT TARGET 1 TARGET 2 TARGET 3

TIME 1 0.50 0.04 0.16 0.25

TIME 2 0.03 -0.04 0.16 0.89

TIME 3 -0.04 -0.14 0.09 1.08

TIME 4 -0.10 0.21 0.73 0.19

TIME 5 -0.26 0.24 1.08 0.22

TIME 6 -0.05 -0.19 1.15 0.07

TIME 7 -0.25 -0.18 1.16 0.66

TIME 8 -0.28 -0.18 1.26 0.52

TIME 9 -0.13 -0.24 1.29 -0.12

TIME 10 0.03 0.38 0.70 -0.13

TIME 11 0.02 0.02 0.04 0.97

TIME 12 -0.10 -0.12 0.39 0.87

TIME 13 0.10 0.27 0.34 0.24

TIME 14 0.06 0.73 0.23 0.14

TIME 15 0.89 -0.11 0.11 0.12

TIME 16 1.04 -0.09 -0.04 0.05

TIME 17 0.70 0.08 0.12 0.07

TIME 18 0.98 0.02 0.02 -0.02

TIME 19 1.04 0.04 0.00 -0.08
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TABLE A.3: A LIST OF DATA USED IN FIGURE A.3

OBSERVATION AMBIENT TARGET I TARGET 2 TARGET 3

TIME 1 0.44 0.04 0.58 0.00

TIME 2 0.69 0.01 0.30 0.03

TIME 3 0.73 -0.02 0.41 0.15

TIME 4 1.08 -0.02 0.10 0.07

TIME 5 -0.02 0.76 0.85 -0.06

TIME 6 0.34 0.58 -0.01 0.01

TIME 7 0.03 1.08 -0.06 0.12

TIME 8 0.02 1.12 -0.04 0.00

TIME 9 0.18 1.09 0.97 -0.30

TIME 10 0.00 1.12 -0.07 0.05

TIME 11 -0.02 1.11 0.75 0.01

TIME 12 -0.04 1.09 -0.15 0.77

TIME 13 0.47 0.79 -0.24 0.25

TIME 14 1.00 0.06 -0.04 -0.03

TIME 15 0.54 -0.02 0.44 0.03

TIME 16 1.05 -0.02 0.08 0.03

TIME 17 0.98 0.02 0.04 0.02

TIME 18 0.94 0.02 0.03 0.01

TIME 19 0.98 0.03 -0.14 0.03
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TABLE A.4: A LIST OF DATA USED IN FIGURE A.4

OBSERVATION AMBIENT TARGET 1 TARGET 2 TARGET 3

TIME 1 0.17 -0.03 0.95 0.04

TIME 2 -0.03 -0.03 0.66 0.24

TIME 3 -0.03 -0.03 1.09 1.14

TIME 4 -0.05 0.25 1.08 0.02

TIME 5 -0.03 -0.07 1.02 0.01

TIME 6 0.05 -0.12 1.00 0.52

TIME 7 0.04 -0.12 1.06 -0.09

TIME 8 -0.01 0.93 1.07 0.95

TIME 9 0.16 0.81 1.21 -0.31

TIME 10 -0.04 0.02 1.11 -0.19

TIME 11 -0.10 -0.04 0.06 1.04

TIME 12 0.08 -0.12 0.58 0.58

TIME 13 0.04 -0.05 0.02 0.97

TIME 14 -0.04 0.27 0.25 0.90

TIME 15 1.07 -0.04 0.62 0.05

TIME 16 1.06 -0.03 -0.19 0.18

TIME 17 0.62 -0.01 0.50 0.09

TIME 18 0.93 -0.01 0.39 0.02

TIME 19 0.99 0.03 0.07 -0.01
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APPENDIX B: NATLAB PROGRAM

function SIGNAL - ship(SPEED,RANGE,ASPECT,SS,SD)

The SHIP.M function generates a simulated passive sonar
% signal resembling the acoustic signature of a surface ship.
% The sonar signal behaves in accordance with common surface
% ship parameters and the passive sonar equation [Ref. 2]:

SL - TL - NL - DI + DT

SL - SOURCE LEVEL (of TARGET)
TL - TRANSMISSION LOSS
NL - AMBIENT NOISE LEVEL
DI - DIRECTIVITY INDEX (of TRANSDUCER)
DT - DETECTION THRESHOLD (of TRANSDUCER)

The program takes the SPEED and ASPECT angle of a target
provided by the user, and calculates the total source level
of the target. Next, using the RANGE provided, the program
calculates the expected transmission losses and then modifies
the predetermined source level signal to reflect the losses.
Lastly, the program uses the sea-state level (SS) and the
shipping density level (SD) to find the overall ambient-noise
which is then added to the modified source level signal. The
resulting source level signal presented to the user.

STEP (I) DETERMINE THE SOURCE LEVEL

First determine the noise level based on the speed of the
and aspect angle of the target source.

Center frequency for cavitation noise spectrum

CFREQ = 100;

% Total frequency bandwidth covered

FREQ - 256;

STEP-01 - 'CALCULATE MAXIMUM SOURCE LEVEL'

' Calculate the maximum signal strength, MAX, (in dB).

if SPEED <- 10
MAX - 150 + .5*SPEED;

end

if SPEED > 10
MAX - 155 + 1.2*SPEED;

end
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% DETERMINE THE CAVITATION NOISE SPECTRUM

STEP_02 = 'DETERMINE CAVITATION NOISE'

CAVIT SIG = cavit(FREQ, CFREQ, RANGE);

Determine the cavitation noise spectrum

% Find the normalized fft of the cavitation noise signal

NORMFFT - normal(fft(CAVIT SIG));

% Adjust the amplitude of the spectrum to match source level.

% (1) Determine spreading loss in dB

SPLOSS - 20*log(RANGE)/log(lO);

% (2) Determine adjusted amplitude

ADJ_AMP - MAX - SP LOSS - atten(CFREQ)*RANGE*lE-3;

% Calculate the adjusted cavitation noise signal

% (1) Find the modified fft of the cavitation noise speutrum

ADJSIG - exp(0.23*ADJAMP)*NORMFFT;

% (2) Extract the simulated cavitation noise signal with ifft.

TARGET-SIG = real(ifft(ADJSIG));

% (3) Calculate and plot the cavitation noise spectrum

clg
subplot(211)
SPECTRUM = db(abs(ADJSIG(512:-l:l)));
plot(TARGET SIG(1:500)),title('CAVITATION NOISE SIGNAL')
xlabel('TIME SAMPLES'),ylabel('AMPLITUDE')

plot(SPECTRUM(l:250)),title('CAVITATION NOISE SPECTRUM')
xlabel('FREQUENCY (Hz) '), ylnbei('MAGNITUDE (dB)')
pause
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STEP_03 - 'CALCULATE BLADE RATE'

%DETERMINE THE BLADE RATE FREQUENCY

%Assume 5 bladed screw

BLADE -5;

% Propeller turns per knot

TPK - .12;

% Propeller rotations per second

RPS - SPEED*TPK;

% Calculate the blade rate frequency and the harmonics

to- BlADE*RPS;
fl - 2*BLADE*RPS;
f2 - 3*BIADE*RPS;
f3 - 4*BLADE*RPS;

pi - 6.28319;

% Sampling frequency (fs)
fs - 512;

% Calculate blade rate directivity based on aspect

DIBLADE - di(25,fO,3.14,ASPECT);

% Determine the transmission loss for blade noise.

TLAO - SPLOSS + atten(fO)*RANGE*lE-3;
TLAl - SP LOSS + atten(fl)*RANGE*lE-3;
TLA2 - SPLOSS + atten(f2)*RA4GE*lE-3;
TLA3 - Sp LOSS + atten(f3)*RANGE*1E-3;

% Calculate the amplitude for each frequency.

AO- exp(0.23DI_BLADE*(MAX - 17.37'log(fO) - TL AO);
Al - exp(0.23*DI_BLADE*(MAX - 17.37*log(fl) - TL7Al);
A2 - exp(0.23*DIBLADE*(MAX - 17.37*log(f2) - TL A2);
A3 - exp(0.23*DIBLADE*(MAX - 17.13*log(f3) - TLA3);

STEP_04 - 'DETERMINE SCREW NOISE'

PHIO - 2*pi'fO/fs; PHIl - 2*pi*fl/fs; PH12 - 2*pi*f2/fs; PH13 -2*pi*f3/f

for t - 1:fs
SCREW(t) - AO*cos(PHIO*t)+Al*cos(PHIl*t)+A2*cos(PHI2*t)+A3*cos(PHI3*t);

and
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%Combine screw blade noise with source level signal

TARGET-SIG - TARGET-SIG + SCREW;

I DETERMINE OTHER RADIATED NOISE

4 TONE.A - Motor Bearing @ 88 Hz 195 db
4 TONEB - Reduction Gear * 53-57 Hz 150 dB
% TONE C - Flow noise @ 203 Hz 200 dB
% TONED - Generator @ 60,120 180,240 Hz 190 dB(MAX)

4 TONE-E - Fuel oil Pump * 135 Hz 160 dB
%CALCULATE ADSUSTMENT FOR DOPPLER EFFECT

%ASSUME SPEED OF SOUND IN WATER IS 2925 KNOTS

STEP_05 - 'DETERMINE DOPPLER'

DOPPLER - 2925/(2925 + SPEED*cou(ASPECT));

TONE A - 88*DOPPLER;
TONEBI - 53*DOPPLER:
TONEB2 - 57*DOPPLER;
TONEC - 203*DOPPLER;
TONE DI - 60*DOPPLER;
TONED2 - 120*DOPPLER;
TONE_03 - 180*DOPPLER;
TONED4 - 240*DOPPLER;
TONE-E - 135*DOPPLER;

STEP-06 $ CALCULATE TRANSMISSION LOSSES'

TLA -SPLOSS + atten(TONE-A)*RANGE'lE-3;
TL-B =SP LOSS + atten(TONEBl)*RANGE*lE-3;
TL-C SP LOSS + atten(TONE-C)*RANGE*lE-3;
TL-D1 - SP-LOSS + atten(TONED1)*RANGE*lE-3;
TL-D2 - SP-LOSS + atten(TONED2)*RANGE*lE-3;
TL-D3 - SPLOSS * atten(TONE-D3)*RANGE*lE-3;
TL_04 - SP-LOSS + atten(TONED4)*RANGE*lE-3;
TL-E - SPLOSS + atten(TONEE)*RANGE*lE-3;

%CALCULATE THE SIGNAL LEVEL BASED ON ASPECT
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%%CALCULATE DIRECTIVITY FACTOR

%DIRECTIVITY - DI (SOURCE QUALITY, FREQUENCY, ASPECT, SOURCE DIRECTIVITY)

STEP-07 - 'CALCULATE DIRECTIVITY'

DI_-A - di(50,8S,2.57,ASPECT) + di(50,88,1.O,ASPECT);
DIEB - di(90,53,3.14,ASPECT) + di(100,53,1.57,ASPECT);
DIC - di(25,203,3.14,ASPECT);
DIDi - di(25,60,1.57,ASPECT);
DI_02 - di(25,120,1.57,ASPECT);
DI_03 - di(25,lSO,1.57,ASPECT);
DI_04 - di(25,240,1.57,ASPECT);
DIE -di(25,135,0.8,ASPECT);

STEP-08 - 'CALCULATE THE AMPLITUDE OF EACH TONAL'

A(i) - exp(o.23'DI A*(160 - TL-A));
A(2) - oxp(O.23*DIB*(165 - TL B));
A(3) - exp(0.23*DIC*(169 - TL~c));
A(4) - exp(O.23*DIDl*(222 - IS.02*log(TONE -Dl) - TL Dl));
A(5) - exp(O.23*DI_D2*(222 - 13.02*log(TONE D2) - TLD2));
A(6) m exp(0.23*DI_D3*(222 - 13.02*log(TONE 03) - TL-D3));
A(7) - *xp(O.23*DID4*(222 - 13.02*log(TONE_04) - TL-D4));
A(S) - exp(O.23*DI E*(158 - TL-E));

STEP-09 - 'COMBINE TONALS'

PA - 2*pi*rand(l);
PB - 2*pi'rand(lfl
PC - 2*pi*rand(l);
PE - 2*pi*rand(l);

PHI -2*pi/fs;

for t - l:fs
w - PHI*t;

TONALS_0i(t) - A(1)*cos(w*TONE-A+PA)+A(2)'*cos(w*TONEBI+PB)+..
A(2) 'cos (w*TONEB2+PB)+A(3) *coa(v*TONEC+PC);

TONALSO02(t) - A(4)*cos(w*TONEDI)+A(5)*cos(w*TONED@)+...
A(6)*cos(wTONE-D3)+A(7)*cos(w*TONE-D4);

TONALSO03(t) - A(8)*cos(v*TONEE+PE);
end

TONALS - TONALS-01 + TONALS-02 + TONALS 03;

% Find the largest amplitude

ADJ - 0;
for n - 1:8,

if A(N) > ADJ

end A(N
end
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4 Take the f ft of the combined tonal signal and normalize it.
4 Next, adjust signal to maximum amplitude.

TONFPT - fft(TONALS);
TONENORM - normal (TONFFT);
TONALS - real(ifft(ADJ*TON.NORM));

% Combine the combined tonal signal with the total source level signal.

TARGET-SIG - TARGET-SIG + TONALS;

%DETERMINE THE AMBIENT NOISE LEVEL

4 (1) CALCULATE THE SHIPPING DENSITY NOISE

STEP_10 ='CALCULATE SHIPPING DENSITY'

4 SD -SHIPPING DENSITY

NOISE-SIG - zeros(l:fs);

for f - l:FREQ
if f < 44

SHIP NOISE(f) =6.51*(log(f) +448 + SD*3 + rand(l);
else

SHIP NOISE(f) -139 + SD*3 + rand(l) - 17.37*log(f);
end

PHASE - 2*pi*rand(l);
AMP - exp(O.23*SHIPNOISE(f));
w - 2*pi*f;

for k - l:fs
NOISE SIG(k) - NOISESIG(k) + AMP*cos(w*k + PHASE);

end
end

NOISENORN - normal(fft(NOISESIG));
NOISESIG - real(ifft(exp(0.23*(74.26 + 3*SD))*NOISENORM));
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%(2) CALCULATE THE SEA STATE NOISE

STEP_11 ='CALCULATE SEA STATE NOISE'

SS5 SEA STATE

AMBIENT-SIG - zeros(l:fs);

for f - 1:FREQ,
if f <- 10,

AMBIENT(f) -78 + S5*3 + rand(l) - 6.51*log(f);
end

if f > 10,
if f <- 80,
AMBIENT(f) =4.78*log(f) + 50 + 55*3 + rand(l);

end
end

if f > 8,
AMBIENT(f) -109 + SS*3 + rand(l) - 8.69*log(f);

end

PHASE - 2*pi'rand(1);
AMP - exp(0.23*AMBIENT(f)):
v - 2*pi*f;

for k - l:fs,
AMBIENT-SIG(k) - AMBIENT SIG(k) + AMP*cos(v*k + PHASE);
end

end

AMBNORM - normal(fft(AMBIENT -SIG));

AMBIENTSIG - real(ifft(exp(O.23*(79 +, 3*SS))*AMBNOR());

% Combine shipping noise and ambient noise

TOTAL-NOISE - AMBIENT-SIG + NOISESIC;

% Combine total noise with the target source signal

TARGETSIG -TOTALNOISE + TARGETSIG;

% Display acoustic waveform

plot(TARGET SIG(l:500)), title(' ACTUAL SIGNAL '
xlabel(' Time Samples '),ylabelC' AMPLITUDE ')

TEMPFFT - ftt(TARCETSIG);
SPECTRUM - db(abs(TEMPFFT(512:-1:l)));
plot(SPECTRUM(l:250)), title (' ACTUAL SPECTRUM '
xlabel('FREQUENCY (Hz) '), ylabel('MAGNITUDE (dB)')
pause

SIGNAL - TARGETSIC
end
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function signal - cavit(FP.EQ,CFREQ,RA4GE)
% signal -cavit(FREQ,CFREQ)
signal - zeros(l:2*FREQ);

c
N - 2*FREQ;
theta - 6.28/N;
SPLOSS - 20*log(RANGE)/log(lO);
for f - l:CFREQ,
home
STEP 02 - 'DETERMINE CAVITATION NOISE'
percent done - lOO'f/FREQ
p - rand(l)*6.28;
phi - theta*f;
M - 8.6859*log(f);
M - .98*M + .02*M*rand(l) - SPI.OSS - atten(f)*RAiqGE*lE-3;
A - exp(M*.23);

for m - 1:N,

frequency(m) - A*cos(phi*m+p);

end

signal - signal + frequency;

end

MAX - 17.3913*log(CFREQ);

for f - (CFREQ+1):FREQ,
home
STEP 01 - 'DETERMINE CAVITATION NOISE'
perceint done - l00*f/FREQ
p - rand(l)*6.28;
phi - theta'f;
M - MAX - 8.6859*log(f);
M - .98*M + .02*M*rand(l) - SP-LOSS -atten(f)*RANGE*lE-3;

A - exp(M*.23);

for m - 1:N,

frequency(m) - A*cos(phi*m+p);

end

signal -signal + frequency;

end

end
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function r -DI(L,t,p,aspect)
I r - DI(L,f,p,aspect)
r - (sin(L*3.14*f/4875*sin(aspect+p))/(3.l4*Lef/4875*sin(aspect+p)))-2;
end

function m - DB(sigfft);
% m - DB(sigfft) aigf ft - absolute value of your signals f ft.
N - size(sigfft');

for n - 1:N/2
a(n) - 4.34294*log(sigfft(n));

and
end

function X - normal CT)

a - size(TI);
scaler -abs(T(l));
for n I :*

if scaler < abs(T(n))
scaler -abs(T(n));

end
end
X - T/scaler;
and
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